If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=100-4.9t^2
We move all terms to the left:
0-(100-4.9t^2)=0
We add all the numbers together, and all the variables
-(100-4.9t^2)=0
We get rid of parentheses
4.9t^2-100=0
a = 4.9; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·4.9·(-100)
Δ = 1960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1960}=\sqrt{4*490}=\sqrt{4}*\sqrt{490}=2\sqrt{490}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{490}}{2*4.9}=\frac{0-2\sqrt{490}}{9.8} =-\frac{2\sqrt{490}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{490}}{2*4.9}=\frac{0+2\sqrt{490}}{9.8} =\frac{2\sqrt{490}}{9.8} $
| 56=8(s+43) | | x^2+2.4x=-0.8 | | X-4/15=6/5-x-2/10 | | 2x=7(9) | | 11+3v=-7 | | 9=10+n/10 | | 7+7v=-133 | | -4(2x+6)+7x=20 | | 7+7v=-`133 | | -4v+6=30 | | h2–17h+70=0 | | -1=m-5/4 | | 2y=7(12) | | 8x-6=5x-27 | | 9+-7+n=-90 | | /7+10c=–5+8c | | x•8=2 | | 5t-12=t=20 | | 7+10c=–5+8c | | 5(x+6)^2+60=0 | | 35=x-(-10) | | p=42*2+10*2 | | -338=-13m | | 6n=150n= | | a/16=-4 | | 2-(3t+15)=20 | | 39x+107=x | | p=8.3*2+15.8*2 | | 0.03x+x=13634 | | 28=x+11 | | 14+3y=-16 | | 2(c-15)=-4 |